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Abstract

Environmental amenities play an important role in residential location decisions, which in turn

affect the concentration of consumption and production activities. In this paper, I develop and

estimate a spatial general equilibrium model to examine how environmental amenities affect

the spatial distribution of urban economic activities and their welfare consequences. The model

characterizes household location and consumption decisions, production decisions, as well as

urban agglomeration and dispersion forces. The empirical analysis leverages a natural experi-

ment of pollution monitoring and information disclosure program and recovers key underlying

parameters using fine-scale travel data on commuting and consumption trips and environmental

amenities. The analysis shows that job access, residential amenities, and consumption access

account for 49%, 30% and 21% of overall attractiveness of a residential location, respectively.

A one-standard-deviation change in air quality leads to a 0.24-standard-deviation change in in-

dividuals’ perceived amenity level. Counterfactual simulations suggest an 8.4% welfare gain if

individuals were to fully incorporate environmental amenities into their decisions, compared to

the scenario of not incorporating their impacts. The welfare difference is driven by changes in

residential and workplace locations, as well as consumption and production decisions.
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1 Introduction

Environmental amenities play an important role in residential location decisions, which in turn af-

fect the concentration of consumption and production activities through individuals’ commuting

and consumption travels. Much of the current literature evaluating environmental amenities pays

particular attention to their effects on one single product, such as housing, healthcare, or trans-

portation, while few has been able to uncover the underlying mechanisms or pathways of impact.

This paper aims to provide a comprehensive analysis to understand the effects of environmental

amenities on the spatial distribution of urban economic activities and the welfare consequences. To

do so, I develop and estimate a quantitative spatial general equilibrium model that characterizes

household location and consumption decisions as well as production decisions while incorporating

agglomeration and dispersion forces.

The empirical context of my study is the central area of Beijing within its 6th ring road, with a

land area of around 3,000 square kilometers and a population of more than 15 million. The study

area is densely populated and hosts a majority of the city’s service production and consumption.

The area is also the center of Beijing’s transportation networks, where most commuting and con-

sumption travels concentrate. From 2010 to 2014, Beijing, among other major cities in China,

implemented a series of air pollution monitoring and information disclosure programs. As a result,

the city witnessed drastic changes in consumer behaviors due to increasing public awareness and

information access (Ito and Zhang, 2018; Tu et al., 2020; Barwick et al., 2020). I use the implemen-

tation of the program as a natural experiment and quantify consumers’ preference change during

the period. With reduced form estimations, I document that the program led to substantial changes

in the valuation of environmental amenities in the housing markets. I then simulate multiple coun-

terfactual scenarios using the structural model to evaluate the welfare impacts if individuals were

to fully incorporate environmental amenities into their decisions, compared to the scenario of not

incorporating environmental amenities.

The empirical analysis leverages the spatial granularity of a rich data set on residential loca-

tions, commuting and consumption trips, housing transactions, and environmental amenities. The
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main data set is from the Beijing Household Travel Survey (BHTS), conducted in 2010 and 2014.

The surveys gather information on household and individual demographics, as well as travel diaries

documenting the trips each individual made in a 24-hour time frame preceding the survey. I com-

plement this data set with a transaction sample of new and existing homes from 2006 to 2014 to

construct housing prices for each location. I gather fine-scale data on air pollution and green space

from satellite imagery. Locations of non-environmental amenities including schools and hospitals

are collected as controls.

With this data set, I develop and estimate a spatial general equilibrium model that characterizes

household location and consumption decisions as well as production decisions while incorporating

agglomeration and dispersion forces. From the estimated equilibrium outcomes, I recover the con-

tribution of job access, residential amenities, and consumption access in the overall attractiveness of

a residential location. I estimate a composite measure for unobserved residential amenities and de-

compose it into locations’ environmental and non-environmental attributes. The model is calibrated

for 2010 and 2014 to capture consumers’ preference change. Finally, I conduct a counterfactual

analysis by imposing consumers’ preferences on environmental amenities in 2014 to their 2010 de-

cisions and simulate the equilibrium outcomes if consumers had fully incorporated environmental

amenities into their decisions. Additional scenarios are estimated to uncover the channels of the

welfare impact and consumers’ marginal compensation for lack of environmental amenities.

My analysis yields three key findings. First, the estimates show that job access, residential

amenities, and consumption access account for 49%, 30% and 21% of overall attractiveness of

a residential location, respectively. This is to my knowledge the first study documenting factors

affecting consumers’ residential location choices for a city in a developing economy like Beijing.

Residential amenities play a larger role for consumers’ residential decisions in Beijing, compared

to other developed cities examined in the literature, such as Tokyo and Singapore. Access to con-

sumption and service locations are comparatively less important in determining residential attrac-

tiveness in Beijing, mirroring its residents’ smaller expenditure share on services than those in the

developed economies.
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Second, I document a stronger emphasis on locations’ environmental attributes when consumers

in Beijing selected residence in 2014 compared to 2010. Specifically, I find no statistically signifi-

cant link between the estimated residential amenity and locations’ environmental qualities in 2010,

indicating their possible absence from the residents’ decision process. Conversely, the re-calibrated

results using parameters and data sets from 2014 feature a significant positive correlation between

a location’s environmental characteristics and its estimated level of residential amenity. This is

consistent with findings in Barwick et al. (2020) where they document in Beijing’s housing market

that the capitalization of local air pollution was suppressed in 2010 and only introduced after the

roll-out of pollution monitoring and information disclosure programs.

Third, my analysis reveals large welfare benefits if consumers were to incorporate environ-

mental amenities into their decisions, compared to the scenario of not incorporating environmental

amenities. Estimates from the counterfactual practice suggest that the incorporation of environ-

mental amenities into consumers’ decision utility would lead to an 8.43% increase in the overall

welfare compared to the original equilibrium levels observed in 2010. This is equivalent to the

welfare change of imposing an 8.43% raise in income for all individuals, while holding all other

variables at their unadjusted levels. For 2010, the welfare benefit translates to 2,450 Chinese yuan

(or $366 in 2010 dollars, $440 in 2021 dollars) per person. With a 20-million population, the total

benefit for Beijing’s residents adds up to 50 billion yuan. Further analysis attributes the welfare gain

mostly to changes in residential and workplace locations, as well as consumption and production

decisions. For locations in the most polluted quartile (with an annual PM2.5 concentration above

75 µg/m3), the counterfactual analysis predicts an 18% drop in the number of residents and a 7%

drop in the number of workers on average, due to industrial and production relocation. Residents

there would need to have a higher income in equilibrium to compensate for the low air quality, for

which the model predicts a 3% increase in residential income and workers’ average wage. Decline

in housing demand for both residential and production use would lead to a 12% decrease in area

of floor space and a 5% decrease in housing prices for the most polluted neighborhoods at the new

equilibrium.
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My study makes several contributions to the literature. First, this paper is among the first

to provide a comprehensive estimate on the welfare impacts of environmental amenities using a

quantitative urban model that captures multiple margins from different sectors and locations in

an urban system. Previous evaluations on environmental amenities based on consumers’ revealed

preferences rely mostly on one single sector, such as healthcare and housing1. While each strand of

literature offers valuable insights on how environmental amenities affect consumer decisions on the

respective product, the underlying mechanism through which the impacts are channelled remains

understudied. Models adopted in the sorting literature does allow for a decomposition of multiple

margins with simulations, though the estimation in essence still builds upon partial equilibrium

outcomes (Epple and Sieg, 1999; Bayer et al., 2009; Kuminoff et al., 2013). Among the few studies

that use general equilibrium models in an effort to recover economy-wide estimates (Carbone and

Smith, 2008, 2013; Rudik et al., 2021), most of them use models that are spatially coarse and

treat for example the U.S. or its states as the basic units of analysis. My paper contributes to this

literature with a tractable spatial general equilibrium framework that can provide comprehensive

welfare estimates while remaining separable as to examine which sectors or locations are primarily

impacted by the proposed change in preference. This is made possible as the model in this paper,

at the neighborhood level, rationalizes the supply and demand in multiple local markets, and at a

regional level, incorporates cross-neighborhood interactions from consumers’ location choices.

Methodologically, this paper is closely related to and builds on Miyauchi et al. (2020) and Tan

and Lee (2020). Both papers evaluate the welfare impacts from improved inter-neighborhood mo-

bility, a traditional focus of the quantitative urban literature (Allen and Arkolakis, 2014; Redding,

2016; Desmet et al., 2018; Monte et al., 2018; Allen and Arkolakis, 2019). This paper compliments

the urban literature by providing the first decomposition of locations’ residential attractiveness for a

1For example, studies based on averting behavior methods draw estimates from healthcare spending (Williams and
Phaneuf, 2016; Deschênes et al., 2017; Barwick et al., 2018; Deryugina et al., 2019) or defensive expenditures (Mu
and Zhang, 2016; Sun et al., 2017; Ito and Zhang, 2018); conventional analysis under the hedonic pricing framework
focuses on sorting outcomes in the real estate market (Epple and Sieg, 1999; Chay and Greenstone, 2005; Bayer et al.,
2009; Banzhaf and Walsh, 2008; Kuminoff et al., 2013; Gao et al., 2021); the travel cost method imputes the value of
amenities leveraging the trade-off between recreational demand and travel costs (Clawson and Knetsch, 1966; Parsons
and Stefanova, 2011; Parsons et al., 2013; Mude et al., 2020).
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city in a developing economy. The decomposition analysis also establishes the role of environmen-

tal amenities in urban economic activities. This paper is also the first to calibrate the quantitative

urban model using detailed travel surveys with clearly-stated travel purposes, location choices, and

individual demographics, which are not available for previous studies using smartphone GPS or

public transportation data sets. Moreover, my study expands the application of the model and illus-

trates how changes in consumer preference of a local amenity, or the provision of the amenity itself,

can also have non-local effects that can ripple through an urban system and reshape the spatial dis-

tribution of residents and production activities. This paper demonstrates that the quantitative spatial

model is capable of provide theoretically consistent predictions under various simulated scenarios,

which potentially have important policy implications. Such policies and interventions include but

are not limited to pollution information disclosure programs, news reports on environmental haz-

ards, development of urban projects, relocation of firms or government offices, etc.

The remainder of the paper is organized as follows. Section 2 describes the main data sources.

Section 3 presents the reduced form evidence on the valuation of environmental amenities in hous-

ing prices. Section 4 introduces the spatial urban model that evaluates the role of environmental

amenities in a general equilibrium framework. Section 5 estimates the model parameters. Section 6

conducts counterfactual analysis for the impact of environmental amenities on welfare and spatial

distributional effects.

2 Background and Data

2.1 Air Pollution Monitoring and Information Disclosure in Beijing

Beijing was among the first wave of 42 Chinese cities that established infrastructures for air pol-

lution monitoring in 2000 (People’s Daily Online, 2000). In the same year, China’s Ministry of

Environmental Protection started publishing daily air pollution index (API) at the city level through

the National Daily Report on Air Quality. Official air pollution data in the following decade was

limited in both temporal and spatial resolution and rarely receive public attention.
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In 2008, the U.S. Embassy in Beijing started monitoring PM2.5 concentrations from its rooftop

sensors and published the hourly readings real-time on Twitter. The inconsistency between moni-

tored data from these sensors and the government sources was propelled into a public debate during

episodes of extreme pollution in late 2011 and even raised diplomatic tension.

Large-scale real-time air pollution monitoring was first implemented in Beijing on Jan. 21,

2012 (People’s Daily Online, 2012), when 27 monitoring stations across the city started collecting

hourly readings for pollutants including SO2, NO2 and particulate matter (PM10).2 Air pollution

data was streamed to the public through MEP’s website and was soon adopted by many pollution

and weather apps. The air pollution monitoring-and-disclosure program started to roll out to other

major Chinese cities in 2013 and finally adopted nationwide in 2015, marking a watershed moment

in the history of China’s environmental regulations.

The pollution information program also sparked attention of the mass media, leading to multiple

high-profile coverage on air pollution issues. Jointly, they stimulated substantial changes in public

awareness and consumer behaviors, as captured in the literature through housing markets outcomes

(Barwick et al., 2020), defensive spending (Ito and Zhang, 2018), willingness to pay for clean air

(Tu et al., 2020), etc. I show in Section 3 how the capitalization of air quality has changed in

Beijing’s housing market with the program’s implementation.

2.2 Commuting and Travel Data

I collect data on consumer’s residential, workplace, and consumption location choices from two

rounds of the Beijing Household Travel Survey (BHTS). The surveys are conducted in 2010 and

2014 by the Beijing Transportation Institute, a research agency affiliated with the city’s munici-

pal government. The surveys’ original design is to inform on urban transportation development.

The surveys collect repeated cross-sectional data through in-person interviews on household and

individual demographics (e.g. household income, size, home and car ownership, age, gender, oc-

cupation, etc.) as well as a travel diary for each household member. The travel diary covers all
2In 2013, the monitoring system was modified to include fine particulate matter (PM2.5) and implemented tighter
standards.
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trips taken in a 24-hour time frame preceding the survey and includes information on the origin and

destination, departure and arrival time, purpose of the trip and travel mode used. The surveys for

each year cover roughly 0.5% of Beijing’s residents.

I define the study area to be the center of Beijing within its 6th ring road, with a land area of

around 3,000 square kilometers and a population of more than 15 million in 2010. This area is

densely populated and hosts a majority of the city’s service production and consumption activities.

This area is also the core of Beijing’s transportation networks and concentrates most of the com-

muting and consumption travels in the city. I cover the area using a 2× 2 km grid, with the grid

cells being the basic location units in my spatial analysis. There are 756 cells in total.3

I aggregate individual choices on residential locations, workplace, and consumption location

to the cell level and derive the probability of a cell’s residents visiting other locations for each

purpose of travel. I impute individual income using household income averaged over the full-

time equivalent labor units within the household4. Table 1 provides summary statistics on the

demographics of the surveyed individuals who are in employment in 2010.

Spatial Patterns Figure 1 shows the spatial patterns of the survey data. I plot the residential

density, worker density, average residential income, and average wage for each location. The sam-

ple of the survey is spatially representative. The residential density from the surveyed sample is

closely correlated with population density estimated by the Chinese Academy of Science (CAS)

and NASA, as shown in Figure A15. The density maps reveal Beijing’s strong monocentric charac-

teristics, with a very large residential and employment center at its core, and a few smaller centers

along the west-east axis and in the suburban districts. Moreover, the study area features a distinctive

north-south divide. The northern half of the city has more high-income neighborhoods and high-

wage workplaces than the south. To further explore the divide, I plot in Figure A2 the net inflow of

commuters for each location, calculated as the difference between residential and worker density.

3The size of the grid cells are defined such that the grid is not too coarse, so that spatial heterogeneity and inter-
neighborhood travel patterns are preserved, nor overly fine, so that the survey sample is still spatially representative
with few missing values.

4I designate full-time employees a weight of 1 and part-time a weight of 0.5
5The cell-level correlation between the residential density of survey and of CAS or NASA is above 0.8.
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Red cells in the map denote locations that have more jobs than residents and therefore relies on

commuters from other locations as labor inputs for local firms; cells in blue has more residents

than workers and provide labor force to other locations through commuting. Again, the commuting

map shows an uneven distribution of employment and residents, where business centers locates

predominantly in locations north of the axis road, and the southern areas are more residential.

Commuting and Consumption Trips Besides the spatial characteristics of the trip, the survey

data also records self-reported trip purposes, such as commuting to work or school, shopping,

dining, etc. This allows me to distinguish between commuting and consumption trips and later

identify the determinants of residential decisions in Section 5.3.

Commuting trips account for the largest proportion of individuals’ daily travel, taking up ap-

proximately half of all trips recorded in the surveys. Consumption trips, which I define as the

collection of shopping and dining trips, are the second-largest category and make up for 20% of

all travels. Previous literature has highlighted that consumption trips differ from commuting trips

in many characteristics (Miyauchi et al., 2020; Tan and Lee, 2020). I show in Figure A3 the trip

distance for commuting and consumption trips. Since the data set do not have information on the

route of the trip, I define trip distance as the direct distance between the origin and destination

of the travel. The consumption travels in Beijing are shorter in distance, with an average of 3.6

kilometers, compared to commuting trips’ 7.4 kilometers. Figure A4 reports the same pattern in

travel time. On average, time spent on travel is almost linear to the trip distance (Figure A5). In

the empirical analysis, I use the geographical distance of two locations to estimate travel cost, as

it is exogenous of travel mode selections. Duration of stays at consumption locations is also much

shorter than stays at workplaces, as shown in Figure A6.

Other popular reasons for travel include fitness and exercise, school and classes, picking up

people, and other personal businesses. A majority of these trips are made by children or the retired,

whose residential and consumption decisions may depend on other household members in employ-

ment. I exclude these cohorts from my analysis and focus only on the trips made by the employed

population.
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2.3 Air Quality

I use satellite-derived PM2.5 data covering the time periods of the surveys for Beijing from Hammer

et al. (2020) and Van Donkelaar et al. (2019). The data set includes estimated annual average

concentration of PM2.5 at a high resolution of 0.01◦ and is recently re-calibrated with monitored

data from China’s expanded PM2.5 measurement network. The pollution data is aggregated to 2×2

km cells using within-cell averages. I plot in Figure A8 the air pollution level for each cell in 2009,

one year before the 2010 travel survey6. The figure shows that the central part of Beijing within

the 5th ring road experiences the worst pollution in the city, averaging over 76 µg/m3 in annual

PM2.5 concentration. The polluted area extends from the city center to the southern neighborhoods,

while the northwest and northeast corners of the study area enjoys relatively clean air. This can be

explained by Beijing’s location at the northern tip of a polluted city cluster, with heavy industry

plants to its south and mountains to its north.

2.4 Housing and Floor Space

I collect data on housing transactions sourced from two major real estate firms in Beijing. Data for

each transaction includes the latitude and longitude of the housing unit, the transaction price, and

characteristics of the housing unit and the complex that the unit belongs to. The data set includes

772,419 transactions for both new and resale homes from 2006 through 2014. Locations of these

housing units are plotted in Figure A7.As the data set is a sample from the universe of housing

transactions, I reweight the transactions using the total number of new and resale homes sold in

each year published by Beijing Municipal Commission of Housing and Urban-Rural Development.

The transactions are then aggregate to the cell level according to the geographical location of the

housing units.

The production sector also has a demand for floor space. I additionally derive production floor

space from residential income, consumption probabilities, and residential housing price, assum-

ing perfect competition in the production sector and zero adjustment cost between residential and

6In the model estimation, I lag air pollution by one year to avoid any endogeneity concerns due to simultaneity.
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production floor space.

In Figure 1, I map the floor space density and the average housing prices in 2010. The spatial

distribution of floor space roughly matches those of residents and production activities in the city,

which are the two sources of demand for floor space. Housing prices are notably higher in the

city center, and the northern half of the city hosts more expensive housing units than the south on

average.

2.5 Other Residential Amenities

I collect data on the locations of schools, hospitals, and parks, as plotted in Figure A9. I con-

struct three proximity indices using inverse distance weighting to measure each location’s access

to the city’s schools, hospitals, and parks. For example, residence n’s proximity index to schools is

constructed as

indexschool
n = ∑

j∈J

1
distn j

q j,

where J denotes the set of schools; dn j denotes the distance between residence n and school j;

q j denotes the quality of the school7. Proximity indices to hospitals and parks are constructed

similarly. I categorize locations’ access to parks as an environmental amenity (in addition to air

quality), and access to schools and hospitals as non-environmental amenities.

3 Reduced Form Evidence

Before proceeding to the general equilibrium model, I examine the impact of environmental ameni-

ties on equilibrium prices in the housing market. I use Beijing’s implementation of the pollution

monitoring and information disclosure programs in 2012 as a natural experiment.

In Figure 2, I plot the relationship between air pollution and housing price per unit area from the

housing transactions in Beijing. I control for variables including cell fixed effects, transaction year-

7For schools and hospitals, the amenity qualities are fixed at 1; for parks, I treat each cell as a potential amenity provider
( j) and use the area of green space in each cell as the quality measure (q j).
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month fixed effects, quadratic functions of unit and complex size, as well as other unit and complex

characteristics (such as number of rooms, distance to the nearest subway station at transaction date,

school district, complex size, and number of buildings). The blue dash line in the graph denotes the

semi-elasticities of housing price with respect to air pollution for each quarter, and the gray area

denotes the 95% confidence interval of the estimates. The semi-elasticities are estimated from the

following specification,

logUnitPriceint = ∑
q

αq pollnt + z′intβ +ηn +ξt + εint

where UnitPriceint denotes the unit housing price in a transaction i for a housing unit located in

cell n in year-month t; q denotes the year-quarter and αq are the quarterly semi-elasticities; pollnt

is the cell’s pollution level; zint is the property characteristics introduced above; ηn and ξt are the

location and transaction year-month fixed effects, respectively.

The semi-elasticities of housing price are small and insignificant before Beijing implemented

the pollution monitoring-and-disclosure programs in 2012, indicating a limited response of the

housing market to air pollution. From the first quarter of 2012, I document a negative and sta-

tistically significant relationship between housing price and the location’s air pollution level. The

estimates show a much stronger capitalization of air quality in housing market outcomes after the

implementation of the pollution monitoring-and-disclosure program, consistent with findings from

the literature. More importantly, the drastic change in the event-study estimates at the first quarter

of 2012 is evidence that the changes in consumer preference are not driven by increased income,

since there are no sharp changes in residential income at the beginning of 2012. My findings

corroborate results from Barwick et al. (2020), where they leverage the staggered roll-out of the

monitoring-and-disclosure program at a national scale, controlling for income levels, and document

evidence of consumers’ changing preference due to the information program.

In the next sections, I propose and estimate a general equilibrium framework that uncovers how

environmental amenities and consumer awareness affect market outcomes in multiple sectors.
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4 Theoretical Framework

In this section, I present a spatial general equilibrium model that characterizes household location

and consumption decisions as well as production decisions while incorporating agglomeration and

dispersion forces. I model the city as a collection of locations that differ in residential amenity, pro-

ductivity, quality of service, and costs of travel to other locations. I specify a closed-city model with

exogenous total population that abstract away migration in and out of the city. Individuals choose

their residence, workplace, and consumption location among the locations in the city, and then

choose a consumption bundle consisting of tradable goods, residential housing, and non-tradable

goods (services). Individuals have Cobb-Douglas utility and derive utilities from the consumption

bundle as well as local residential amenities. I model two production sectors, the service sector and

the construction sector, both featuring competitive markets and constant-returns-to-scale technol-

ogy. The service sector produces non-tradable goods using labor and floor space as inputs to meet

the service demand from local and non-local consumers. Labor input of the service sector in any

given location is supplied by the location’s residents who choose to work in local firms and com-

muters from other locations. The construction sector produces floor space from land and capital to

meet local residential and production demands. Transport of tradable goods is costless across the

city, and the price of tradable goods are the same at all locations. Consumers and producers take

wage and prices as given when making decisions. Markets at each location clear at equilibrium

price and wage levels. Figure 3 summarizes the framework of the model.
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4.1 Consumer’s Problem

The utility function for an individual, i, takes the Cobb-Douglas form below.8 Individual i resides

in location n, works in location m, and consumes non-tradable goods in location j.

Unm j(i) =Bnbn(i)
[

xT (i)
αT

]αT
[

H(i)
αH

]αH
[

xS(i)d j(i)
αS

]αS

,

and 0 < αT ,αH ,αS < 1,

αT +αH +αS = 1,

(1)

where xT (i), H(i), and xS(i) denote the level of consumption for tradable goods, residential housing,

and non-tradable goods (services), respectively, that jointly define the consumption bundle ; αT ,

αH , and αS are the preference weights. Bn is the common level of amenity appreciated by all

residents in location n. bn(i) is the idiosyncratic amenity draw for individual i that is specific to a

potential residence choice n. d j(i) is the idiosyncratic draw on the individual i’s perceived quality

of non-tradable goods at a potential consumption place j.

Combining consumers’ preferences with their budget constraints, I specify consumers’ utility

maximization problem as

max
{xT (i),H(i),xS(i)}|n,m, j

Unm j(i),

s.t. PnT xT +PnHH +PjSκ
S
n jxS ≤

am(i)wm

κW
nm

where 0 < αT ,αH ,αS < 1,

αT +αH +αS = 1,

where PnT , PnH , and PjS define price vectors, wm is the average wage for an efficiency unit of labor

at workplace m, and am(i) is the idiosyncratic productivity shock received by worker i for a specific

workplace m. κW
nm denotes the bilateral iceberg travel cost incurred by an individual commuting

8Individual decision makers in the consumer’s problem also make choices on residence and workplace. I use the terms
individuals, consumers, residents, and workers interchangeably in the following sections, depending on the focus of
the specific problem.

13



from n to m for work, and κS
n j denotes the travel cost for consumption trips from n to j. The total

budget for individual i is the wage that the worker receives (am(i)wm) discounted by the commuting

cost (κW
nm) to rationalize consumers’ distaste for lengthy commuting trips. Likewise, κW

n j effectively

inflates the service price that consumers receive if they seek services from a non-local provider.

There are three individual-specific random draws in the consumer problem, bn(i), am(i) and

d j(i). They each capture individuals’ idiosyncratic tastes for residence, workplace and consump-

tion location, that are not explained by common amenity, wage, prices, or travel costs. In the model,

I define the shocks bn(i), am(i) and d j(i) as amenity shocks, productivity shocks, and quality of ser-

vice shocks as a simplification, since these are the major factors affecting consumers’ idiosyncratic

location preference. The idiosyncratic shocks follow independent Fréchet distributions,

FB
n (b) = exp(−T B

n b−θB),

FW
m (a) = exp(−TW

m a−θW ),

FS
j (d) = exp(−T S

j d−θS),

where T B
n ,TW

m ,T S
j > 0, for any n,m, j ∈ N,

θB,θW ,θS > 1.

T B
n , TW

m , and T S
j are the scale parameters that determine the overall level of random draws for

each location. θB, θW , and θS are the dispersion parameters that govern the variations in random

draws across individuals. The dispersion in consumers’ individual tastes on amenities, services,

and in the levels of productivity allows consumers with identical utility structure to make different

choices that maximize their utilities with respect to different random draws. At an aggregated level,

this heterogeneity in decisions are featured in population’s choice probabilities.

Individuals make decisions in the following sequence9:

Step (1) Individual i chooses residence, after observing idiosyncratic amenity draws bn(i);

Step (2a) Individual i chooses workplace, after observing idiosyncratic productivity draws am(i), con-
9I take residential location choice as the first step, since more than 90% of the travels are round trips that start and end
from individual’s home locations.
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ditioning on residence n;

Step (2b) Individual i chooses consumption place, after observing idiosyncratic service quality draws

d j(i), conditioning on residence n;

Step (3) Individual i choose the optimal consumption bundle of tradable goods, residential housing,

and non-tradable goods, conditioning on previous choices: residence n, workplace m, and

consumption place j.

As I define in the decision sequence, individual i facing a residential decision in Step (1) do

not have information on the realization of idiosyncratic draws, am(i) and d j(i) . Decisions on

workplace in step (2a) and those on consumption place in (2b) are independent of each other; they

are therefore synchronous and interchangeable in the timing sequence.

Optimal consumption bundle. I solve the consumer’s problem using backward induction, start-

ing from the last step where consumers chose the optimal consumption bundle for given locations

n, m, and j. Deriving from the Cobb-Douglas utility function in Equation 1, the optimal levels of

consumption on goods and services for individual i are

xT (i) =
am(i)wm

κW
nm

αT

PnT
,

H(i) =
am(i)wm

κW
nm

αH

PnH
,

xS(i) =
am(i)wm

κW
nm

αS

PjSκn j
.

(2)

where the individual spends an αT , αH , and αS proportion of income on the three sectors, respec-

tively.

Insert the optimal bundle back into the utility function, and I can evaluate the indirect utility as

Vnm j(i) =
Bnbn(i)
PαT

nT PαH
nH
· am(i)wm

κW
nm

·

[
d j(i)

PjS ·κS
n j

]αS

.
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The first fraction in the indirect utility, Bnbn(i)
PαT

nT PαH
nH

, depends solely on characteristics of the res-

idential location n, such as amenities and prices of locally-consumed goods. The second frac-

tion, am(i)wm
κW

nm
, is the consumer’s effective income in the budget constraint; it is driven by the con-

sumer’s workplace choice m alone, conditioning on residence n. The third part of the indirect utility,[
d j(i)

PjS·κS
n j

]αS

, depends only on consumption place j once residence n is set. In the next steps, I trace

consumers’ decisions backwards and solve for individuals’ optimal workplaces and consumption

places.

Workplace choice. Having decided on residence n, worker i now chooses a workplace m that

maximizes the worker’s effective income. The worker i has complete information on the average

wage per efficiency unit of labor (wm) for all workplaces and the commuting costs between res-

idence n and any potential workplace m. Additionally, the individual also observes the realized

value of idiosyncratic productivity draws (am(i)) for all workplaces. I specify the workplace choice

problem as

max
m|n

νnm(i) =
am(i)wm

κW
nm

.

Resident i who lives in cell n will choose to work at a given location m, if workplace m offers

higher effective income (νnm(i)) than any other alternative workplace m′. Therefore, the probability

that location n’s residents choose m as their workplace is given by

λ
W
nm|n = ∏

m′ 6=m
Prob{νnm(i)> νnm′(i)}.

The conditional commuting probability can be solved explicitly by integrating out the Fréchet

distributions for productivity draws, and

λ
W
nm|n =

TW
m

(
wm
κW

nm

)θW

∑l∈N TW
l

(
wl
κW

nl

)θW
. (3)
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Equation 3 implies that workers favor workplaces that offer higher wages (larger TW
m and wm)

with a lower commuting cost (κW
nm). The conditional commuting probability for workplace m is

calculated by evaluating location m’s attractiveness as a workplace, as captured in the numerator,

against the attractiveness of all possible workplaces, as captured in the denominator.

I define residence n’s workplace access as the ex ante expected level of workplace-driven utility

(νnm(i)) that the consumers can extract when applying their optimal workplace choices,

Wn = E [max{νnm(i)}m∈N |n]

= Γ(
θW −1

θW
) ·

[
∑
l∈N

TW
l

(
wl

κW
nl

)θW
] 1

θW

,

(4)

where Γ(·) is the Gamma function.

Commuting access Wn measures a residential location’s ease of commuting to high-wage jobs.

Wn also denotes the expected level of effective income for location n’s residents, when workplace

choice probabilities follow Equation 3.

Consumption place choice. Analogous to the workplace choices, the individual i will choose j

as the location to consume services if the individual can extract more service-related utility from

j compared to any other alternatives. When making consumption place choices, the individual

observes service prices (PnS), cost of travel for service trips (κS
n j), and individual-specific draw on

the perceived quality of service (d j(i)). The consumption place choice can be specified as

max
j|n

γn j(i) =

(
d j(i)

PjS ·κS
n j

)αS

.

Then I can solve for the probability that a resident at n chooses j as consumption place as

λ
S
n j|n =

T S
j

(
PjS ·κS

n j

)−θS

∑l∈N T S
l

(
PlS ·κS

nl

)−θS
. (5)

Equation 5 implies that consumers are more likely to consume services in places that offer
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higher-quality services (larger T S
j ) at a lower price (PjS) and with a lower travel cost κS

n j.

I define a location’s consumption access as the ex ante expectation over the service-related

utility (γn j(i)) achieved with consumer’s optimal choices on service locations.

Sn = E
[
max{γn j(i)} j∈N |n

]
= Γ

(
θS/αS−1

θS/αS

)
·

[
∑
l∈N

T S
l

(
PlS ·κS

nl

)−θS

]αS
θS

,

(6)

Location n’s consumption access (Sn) measures the ease of travel from location n to inexpen-

sive, high-quality services.

Residential choice problem. Now that I have solved consumers’ subsequent decisions on work-

place and consumption location, I trace the problem to the first step, where consumers make res-

idential decisions. Individual i, facing residential choices, do not yet observe the realization of

idiosyncratic productivity and service-quality draws (am(i) and d j(i)), since they will only be real-

ized in step (2). However, individuals do have information on the distribution of the idiosyncratic

draws. Therefore, the individual at step (1) will not be certain on where the optimal workplace or

consumption location will be but knows the probability associated with potential location choices.

For example, individual i, before making residential choices, knows that if the individual chooses

n as residence, the probability that m is the optimal workplace is as specified in Equation 3. With

this probabilistic information, the individual will base the residential decision upon the ex ante ex-

pectation of maximum utility that can be derived from subsequent optimal choices, together with

local price and amenity levels. The residential choice problem is specified as

max
n

Ωn(i) =
Bnbn(i)
PαT

nT PαH
nH
·E [max{νnm(i)}m∈N |n] ·E

[
max{γn j(i)} j∈N |n

]
= bn(i)

Bn

PαT
nT PαH

nH
WnSn.
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I solve the residential probabilities as

λ
B
n =

T B
n

(
Bn

PαT
nT PαH

nH
WnSn

)θB

∑l∈N T B
l

(
Bl

PαT
lT PαH

lH
WlSl

)θB
. (7)

Equation 7 shows that individuals are attracted to residential locations with desirable amenities

(larger Bn and T B
n ), good commuting and consumption access (Wn and Sn, respectively), and low

prices for locally-consumed goods (PnT , PnH).

The ex ante expected utility that an individual can achieve by following the optimal location

choices at every step is

U = E[max{Ωn(i)}n∈N ]

= Γ

(
θB−1

θB

)[
∑
l∈N

T B
l

(
Bl

PαT
lT PαH

lH
WlSl

)θB
] 1

θB

.

(8)

The expected utility (U) also measures overall consumer welfare.

4.2 Producer’s problem

Non-tradable goods (services). Producers use a constant-return-to-scale production technology

to produce non-tradable goods (services) from labor and productive floor space.

xmS = Am

(
L̃m

β

)β ( HmS

1−β

)1−β

,

where xmS is the total amount of service produced; Am is the productivity of firms at location m; L̃m

and HmS denote the efficiency units of labor and floor space used as inputs in the production. β is

the labor share in production, the key parameter that defines the technology.
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Producers’ first order conditions are given by

wm = PmSAmβ

(
L̃m

β

)β−1( HmS

1−β

)1−β

,

PmH = PmSAm(1−β )

(
L̃m

β

)β ( HmS

1−β

)−β

.

This implies that the equilibrium prices and input demands should satisfy the following equa-

tions,

PmS =
1

Am
wβ

mP1−β

mH , (9)

HmS

L̃m
=

1−β

β

(
PmSAm

PmH

) 1
β

. (10)

Construction sector Construction firms use capital Mm and land Km to produce floor space Hm

with a constant-return-to-scale technology,

Hm = Mµ
mK1−µ

m .

where µ is the capital share in floor space construction.

Perfect competition and cost minimization for the construction industry implies

PmH = ϕmH
1−µ

µ

m ,

where ϕm = 1
µ

rK
µ−1

µ

m is a location-specific constant, and r is the cost of building capital common

across locations in the city. The equation suggests an iso-elastic supply of floor space relative to its

price.
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4.3 Externalities

A location’s productivity depends on its exogenous attributes (such as flatness, access to highways,

etc.) and endogenous worker density,

Am = Am

(
Lm

Km

)ηW

, (11)

where An captures the exogenous components, and Lm
Km

is the worker density. Parameter ηW governs

the strength of agglomeration induced by production externality.

Analogously, a location’s amenity level depends on its exogenous attributes (such as green

space, access to good schools, etc.) and endogenous residential density,

Bn = Bn

(
Rn

Kn

)ηB

, (12)

where Bn captures the exogenous components; Rn is the number of residents at location n that can

be calculated from residential probability (λ B
n ) and the city’s total population (Pop) as

Rn = λ
B
n Pop. (13)

Parameter ηB governs the strength of residential externality. The externality induces agglomeration

when ηB is positive and facilitates dispersion if ηB is negative.

4.4 Market Clearing

The market clearing conditions specify the set of equations where equilibrium prices and choice

probabilities clear the local markets at each location.
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With the choice probabilities, I can derive the demand for locally-consumed goods as follows.

xnT =
αTWnRn

PnT
,

HnB =
αHWnRn

PnH
,

Demands for services originates from both local and non-local consumers, which can be derived

as

xmS =
1

PmS
αS ∑

n
λ

S
nm|nWnRn

In the market for non-tradable goods (services), I equate the supply and demand, and the market

clearing condition can be characterized as

Am

(
L̃m

β

)β ( HmS

1−β

)1−β

=
1

PmS
αS ∑

n
λ

S
nm|nWnRn.

I define the total revenue received by location m’s producers as Em, and the market clearing

condition in the service market implies

Em = PmSAm

(
L̃m

β

)β ( HmS

1−β

)1−β

= αS ∑
n

λ
S
nm|nWnRn. (14)

Assuming perfect competition in the markets and zero long-run profit for the firms, I can derive

from producer’s profit maximization problem the demand for labor and non-residential floor space

as

L̃m =
βEm

wm
,

HmS =
(1−β )Em

PmH
.
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The supply of labor is equal to the sum of local labor supply and inflow of commuters,

Lm = ∑
n

λ
W
nm|nRn, (15)

L̃m = ∑
n

λ
W
nm|nRnanm, (16)

where anm is the average productivity of location n’s residents who work at m, and

anm = Γ(θW )(TW
m )

1
θW

Finally, in the housing market, I equate the supply of floor space with residential and production

demands.

Hm = HmB +HmS.

4.5 Equilibrium

The equilibrium can be referenced by a set of price vectors ({PnH ,PnS,PnT})10, wage vector for

an efficiency unit of labor ({wm}), and choice probability vectors and matrices ({λ B
n ,λ

W
nm|n,λ

S
n j|n}),

that clears the markets for labor, non-tradable goods, and floor space at every location. The set

of exogenous parameters includes the scale parameters ({T B
n ,TW

m ,T S
j }) and dispersion parame-

ters (θB,θW ,θS) defining the Fréchet distributions, travel costs ({κW
nm,κ

S
n j}), preference weights

(αT ,αH ,αS), labor share in service production (β ), capital share in floor space production (µ),

parameters defining the strength of production and residential externalities (ηW ,ηB), exogenous

components in productivity and amenity ({Am,Bn}), and the city’s total population (Pop). Given

the equilibrium vectors and matrices, all other equilibrium outcomes can be determined, such as

labor inputs ({Lm, L̃m}), housing inputs ({HmB,HmS}), service outputs ({xmS}), access measures

({Wn,Sn}), level of welfare (U), etc. The endogenous variables collectively solve the set of equa-

10In the following estimation, I take tradable goods as the numéraire and normalize its price (PnT ) to be 1.
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tions summarized in Column (2) of Table 2. In the next section, I calibrate and estimate the param-

eters and retrieve unobserved residential amenities from equilibrium outcomes.

5 Quantitative Analysis and Results

5.1 Travel Costs

One key set of parameters I identify in the model are the travel costs ({κW
nm,κ

S
n j}). They dictate

consumers’ preference on workplace or consumption locations closer to their residence relative to

faraway locations. Travel costs can be identified from the bilateral commuting and consumption

probabilities specified in Equations 3 and 5.

To avoid complicated estimations on bilateral travel costs for each home-destination pair, I

further parameterize the model and impose an exponential relationship between travel costs and

trip distances. Travel probabilities can then be transformed into log-linear gravity equations. For

example, the commuting costs and probabilities are

κ
W
nm = exp(−φ

W ·distnm),

logλ
W
nm|n = Φ

W distnm +ψ
W
m +ξ

W
n ,

where distnm is the distance between locations n and m, φW is the semi-elasticity of commuting

cost with respect to distance, ΦW is the semi-elasticity of commuting probability with respect to

distance, ψW
m and ξW

n are fixed effects capturing the location-specific characteristics, and

Φ
W = φ

W
θW ,

ψ
W
m = log(TW

m wθW
m ),

ξ
W
n = log

[
∑
l∈N

TW
l

(
wl

κW
nl

)θW
]
.

The workplace fixed effect ψW
m signals workplace m’s wage level, and residence fixed effect ξW

n

24



is associated with residence n’s workplace access.

Finally, I add an idiosyncratic error term to capture other factors affecting travel probabilities

apart from distance, such as availability of public transport, scenery, pleasure of the trip, etc. The

gravity equations can then be estimated from observed travel probabilities using log-linear ordinary

least squares (OLS) regressions or Poisson pseudo maximum likelihood (PPML) estimations with

the following specifications:

logλ
W
nm|n = Φ

W distnm +ψ
W
m +ξ

W
n + ε

W
nm,

logλ
S
n j|n = Φ

Sdistn j +ψ
S
j +ξ

S
n + ε

S
n j.

(17)

Table 3 reports the PPML estimates of the gravity coefficients (Φ) for various trip purposes.

Each observation in the regression is a bilateral home-destination pair. Columns (1) to (4) reports

estimates for all trips, commuting trips, consumption trips, and other trips, respectively. I define

consumption trips to include dining and shopping trips. Overall, the estimates confirm a negative

and statistically significant relationship between travel probabilities and trip distances for all trip

purposes, with a semi-elasticity of -0.169 averaging over all trips documented in the survey. This

suggests that destinations that are one-kilometer further away from a place of residence receive

16.9% less visits from its residents on average. Specifically, the distance slope for bilateral con-

sumption trips (-0.414) is much steeper relative to that of commuting trips (-0.100), consistent with

estimates in the literature (Miyauchi et al., 2020; Hausman et al., 2021)11. The estimates reveal that

consumers’ perceived cost of travel is a few times higher when traveling for services, compared to

the cost of commuting to work. The results accord with my observations from the surveys that

consumption trips are on average shorter and more local compared to commuting trips.

In Figure A10, I present the result of a validation exercise for the gravity equations. I plot

the observed and predicted values for a location’s total number of workers (Lm) and total service

revenue (Em). The two variables are direct products of commuting and consumption probabilities,

as laid out in Equations 15 and 14. The prediction errors of the two variables plotted in the graph
11Nevertheless, both slopes are considerably steeper than those estimated for Tokyo in Miyauchi et al. (2020), consis-

tent with the fact that Beijing’s residents make shorter trips on average compared to Tokyo’s residents.

25



are entirely driven by prediction errors in commuting and consumption probabilities. Correlation

between the survey data and model predictions are 0.98 and 0.97, respectively, for the number of

workers and service revenue. This suggests a very good fit of the gravity equation estimates in

explaining the commuting and consumption patterns of the city.

5.2 Other Parameters

I start by calibrating the dispersion parameters for the Fréchet distributions as θB = θW = θS = 6,

following the estimated ranges in Ahlfeldt et al. (2015), Heblich et al. (2020), and Kreindler and

Miyauchi (2021)12. Exploiting the spatial heterogeneity in access and amenities measures, I can

identify and solve the location-specific scale parameters ({T B
n ,TW

m ,T S
j }), as well as exogenous

productivity (Am) and exogenous amenities (Bn). In Section 6, I discuss a method that circumvents

the estimations for constant location-specific parameters.

Next, the Cobb-Douglas preference weights (αT ,αH ,αS) are calibrated using observed con-

sumers’ expenditure shares from Beijing Municipal Bureau of Statistics, as implied by the optimal

bundle in Equation 2. I set the expenditure share on tradable goods (αT ), residential housing (αH),

and non-tradable goods (αS), to be 52%, 28% and 30% for 2010, respectively. The following

years saw a large shift of consumers’ demand from commodities to services, leading to a fifteen-

percentage rise in expenditure share on services (to 45% in 2014) and a drop for tradable goods (to

24% in 2014). The survey also documents a modest uptick in consumer’s spending on housing rel-

ative to non-housing sectors, partly owing to soaring housing prices. I use two sets of expenditure

shares separately in the calibration for 2010 and 2014.

To define production technologies, I extrapolate from estimates in Bai and Qian (2010) and set

the labor share in the service sector (β ) as 0.60. I set the capital share in floor space production

(µ) as 0.77 according to reports from China’s Ministry of Land and Resources. I calibrate the

externality parameters (ηW ,ηB) from the literature (Rosenthal and Strange, 2004; Melo et al., 2009;

12Although none of the cited studies estimate the dispersion parameters for Beijing or China specifically, the difference
in estimates across cities and regions are small. I do not estimate these parameters in this paper due to lack of
precision or availability of data.
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Ahlfeldt et al., 2015)13.

5.3 Decomposition of Locations’ Attractiveness

To estimate the role of environmental amenities in consumers’ residential choices, I first retrieve

unobserved residential amenities from locations’ attractiveness as residential locations. I define a

location’s attractiveness from observed residential probability and housing price, combining Equa-

tions 8 and 7,

Attractivenessn = (λ B
n )

1
θB PαH

nH =Wn ·Sn ·Bn. (18)

where Wn and Sn measure location n’s access to job and consumption locations, respectively. I

define Bn as the residential amenity, capturing determinants of a location’s attractiveness other than

commuting and consumption access, and

Bn = (T B
n )

1
θB

Bn

PαT
nT
·

Γ(θB−1
θB

)

U
=

Attractivenessn

WnSn
. (19)

The level of residential amenities (Bn) differ across locations in the city only by the averages of

Fréchet amenity shocks (T B
n ) and common amenity levels (Bn), since price of tradable goods (PnT ),

ex ante expected utility (U), and dispersion of Fréchet shocks (θB) are the same for all locations. As

such, the model is capable of evaluating the general equilibrium impacts from exogenous shocks

in the provision of amenities, captured in Bn’s, or those from a change in consumer preference on

amenities, captured in T B
n ’s.

Equation 18 implies that a location’s attractiveness, characterized by observed equilibrium out-

comes such as dense population (large λ B
n ) or expensive housing (large PnH), can be attributed

to desirable workplace access (Wn), consumption access (Sn), or a composite of other residential

amenities (Bn).

13There is a lack of consensus in the literature regarding the estimates for the externality parameters. I show in Section
6.2 that the welfare gains remain if I mute externalities in the model.
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I plot in Figure A11 the overall attractiveness of each location as defined in Equation 18. Loca-

tions with the highest attractiveness cluster within Beijing’s 3rd ring road and align with locations

with high residential densities and expensive housing.

I recover locations’ workplace and consumption access using residence fixed effects from the

gravity equation estimates,

W∗n = Γ(
θW −1

θW
) · exp(

1
θW

ξ
W∗
n ),

S∗n = Γ(
θS−1

θS
) · exp(

1
θS

ξ
S∗
n ).

where the superscript ∗ denotes estimated values; W∗n and S∗n are the estimated access measures;

ξW∗
n and ξ S∗

n are the estimated residence fixed effect for location n from Equation 17. Residential

amenities can then be estimated using Equation 19.

In Figure 4, I present the estimates for workplace access, consumption access, and residential

amenities for each location. The maps show a strong correlation between locations’ commuting ac-

cess (W) and consumption access (S). Individuals can enjoy greater commuting and consumption

access if they reside in the central area of Beijing within the 4th ring road, where jobs, businesses,

and public transportation lines concentrate. On the other hand, areas with desirable levels of resi-

dential amenity either concentrate in Beijing’s core within the 2nd ring road or scatter around the

suburban centers to the east and northwest.

In the next step, I undertake a variance decomposition practice to calculate the relative impor-

tance of each attraction component following the log-decomposition method implemented in Eaton

et al. (2004) and Miyauchi et al. (2020). Specifically, I estimate the contributions of each compo-

nent to the total variation in locations’ attractiveness using a set of log-log OLS regressions, where

I regress the log-transformed access or amenity measures individually on the log-transformed at-
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tractiveness measure.

logWn = vW + kW log(Attractivenessn)+uW

logSn = vS + kS log(Attractivenessn)+uS

logBn = vB + kB log(Attractivenessn)+uB

(20)

By construction, the intercept terms in the three equations above sum up to zero (vW +vS+vB =

0) and the slopes sum up to one (kW + kS + kB = 1). Coefficient estimates on the slope terms

(kW ,kS,kB) denote the proportion of variation in overall attractiveness that can be attributed to each

component. Appendix C explains the regression-based variance decomposition in detail.

Panel (d) in Figure 4 reports the estimated coefficients from Equation 20. The estimates suggest

approximately half of a location’s attractiveness to the population can be ascribed to its ease of com-

mute to well-paid jobs, with another 21% to its accessibility of inexpensive high-quality services,

and a remaining 30% to other residential amenities. The results are comparable with Miyauchi et

al. (2020)’s findings for Tokyo where commuting and consumption access each accounts for 45%

and 27% of the variation in attractiveness14.

To further uncover the amenities cloaked under the composite term B, I show in Table 5 the

regression estimates of a location’s residential amenity on its potential determinants, including its

access to schools, hospitals, parks, and the location’s air quality. Proximity indices for schools,

hospitals, and parks are composed using inverse distance weighting, and air pollution levels are

lagged by one year to avoid any endogeneity concern due to simultaneity. As the estimates show, in

2010, a location’s proximity to schools and hospitals are strong predictors of its model-derived resi-

dential amenity: a one standard deviation change in the proximity indices for schools and hospitals

corresponds to a 0.12 and 0.16 standard deviation change in the residential amenity on average.

However, I find no significant link between the composite amenity term and environmental ameni-

14Miyauchi et al. (2020) construct estimates using data from Tokyo in 2019, where the expenditure share of the service
sector is calibrated to be 66%, twice as large as Beijing’s in 2010 (30%). My estimates for Beijing using data from
2014 are more comparable, where the expenditure share had increased to 45%, and commuting and consumption
access each accounts for 44% and 28% of the variation in locations’ attractiveness.
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ties, implying their possible absence from the residents’ decision process.

As a comparison, I re-calibrate the model and estimate the equilibrium outcomes using parame-

ters and data from 2014. Column (2) in Table 5 presents the estimates. In contrast to earlier findings,

the results document a significant positive correlation between a location’s environmental qualities

and its estimated level of residential amenity in 2014. Meanwhile, the coefficient estimates for

non-environmental amenities (schools and hospitals) are similar to their 2010 counterparts. Specif-

ically, a one standard deviation change in proximity to parks or in air pollution levels correlates

to 0.14 and 0.19 standard deviation changes in the residential amenity, respectively. The estimates

indicate that environmental amenities play a larger role in consumers’ residential decisions in 2014

compared to 2010. The estimated results are robust to inclusion of additional district fixed effects,

as shown in Table A1.

There are several possible explanations for this change in consumers’ preference structure. For

one, rising income levels can boost consumers’ demand for environmental amenities, as they are

often considered to be less affordable housing attributes or even a luxury (Martinez-Alier, 1995;

Łaszkiewicz et al., 2019). Repeated incidences of extreme pollution events during winter in 2012

and 2013, coupled with the following government campaign for clean air, also contributed to con-

sumers’ increasing awareness on environmental challenges. In 2012, the introduction of pollution

information disclosure programs in Beijing granted high-quality real-time pollution information

streams directly to individuals, enabling potential residential sorting behaviors thereafter (Barwick

et al., 2020). I show using an event study in Section 3 that the change in consumer preference

during this period is not driven by rising income levels but rather the improvement in information

availability and increasing consumer awareness on air pollution. This also explains the changes in

consumer preference for parks. The information program implemented in 2012 not only increased

the provision of air quality information, but also changed people’s awareness about the impact of

clean air and being closer to parks on their health. When location-specific air pollution data is not

available from the 27 monitoring stations in Beijing, individuals may also draw on a location’s ac-

cess to parks as a signal for clean air. Moreover, being closer to parks could itself capture the benefit
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from reduced air pollution on top of what the air pollution variable captures due to the coarseness

of the air pollution data from remote sensing.

The absence of environmental amenities from consumers’ decisions in 2010 and their introduc-

tion in 2014 invite interesting questions. If the preferences revealed from the 2014 survey are closer

to consumers’ true experience utility, and their decisions in 2010 are ill-informed, how large would

the welfare loss be from these decisions? How would residential and job locations adjust, had res-

idents in 2010 valued environmental amenities as they did in 2014? I explore these questions in

detail through counterfactual analysis in the next section.

6 Counterfactuals

This section explains the exact-hat approach that solves the counterfactual equilibrium and dis-

cusses results from two counterfactual analyses. The first analysis focuses on consumers’ enhanced

preference towards environmental amenities and estimates its impact on equilibrium outcomes and

the overall welfare. The second analysis estimates the general equilibrium elasticities of income

and housing price from marginal air pollution shocks and derives consumers’ willingness-to-accept

for bearing polluted air.

6.1 Counterfactual Equilibrium

In this section, I apply the exact-hat algebra from the trade literature (Dekle et al., 2008) to the

spatial general equilibrium model proposed in Section 4. Analogous to a comparative static anal-

ysis, the exact-hat approach totally differentiates the system of equations and express variables

in the counterfactual using original equilibrium outcomes and the changes in between equilibria.

This procedure produces a new system of equations that is computationally easy to solve, as it

eliminates location-specific parameters that are constant across equilibria. More importantly, the

exact-hat approach relaxes identification assumptions on the model parameters and finesses convo-

luted estimations from inverting the whole model (Donaldson, 2016).
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Appendix C explains the exact-hat algebra in detail. The system of equations established by the

exact-hat method is summarized in Column (3) of Table 2, each derived from a corresponding equa-

tion in Column (2) that defines the equilibrium outcomes. In the following sections, I undertake

two counterfactual analyses based on results derived from the exact-hat equation system.

6.2 Preference Change on Environmental Amenities

At the end of Section 5.3, I document a stronger emphasis on locations’ environmental attributes

when consumers selected residence in 2014 compared to 2010. If we are willing to assume that

consumers in 2014 have refined their preference structure to incorporate the benefit and harms

associated with environmental amenities but have not yet done so in 2010, it would imply that

the equilibrium outcomes I observe in the 2010 data are suboptimal. For instance, a typical con-

sumer in 2010 would make a residential decision without internalizing the harm of air pollution

and would thus experience polluted air. Collectively, this discrepancy between consumers’ deci-

sion utility and experience utility will lead to a suboptimal distribution of residence across the city.

Furthermore, the spatial distribution of employment and service production would also agglom-

erate towards misplaced residential centers to reduce consumers’ travel costs. Through similar

mechanisms embedded in the system of equations, the absence of environmental amenities will

have extended consequences on all equilibrium outcomes that go beyond their direct impacts on

residential locations.

In the following analysis, I estimate an alternative equilibrium using exact-hat algebra to ex-

plore the counterfactual scenario where consumers valued environmental amenities in 2010 as they

did in 2014. I first calculate the counterfactual change in residential amenities by replacing the

2010 coefficient estimates on environmental attributes (i.e. proximity to parks and air pollution

level) in the first column in Table 5b with their 2014 counterparts in the second column15. This

creates a shock in residential amenities that will drive the adjustments in other equilibrium out-

comes. Using the original 2010 equilibrium as the initial guess (with ẑ = 1 and ∆z = 0 for any
15I scale the 2014 estimates down to comparable levels using CPI for tradable goods, as they are the anchor of price

normalization.
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endogenous outcome z), I update values of the endogenous variables iteratively until they reach a

new equilibrium.

Counterfactual Equilibrium Outcomes. Figure 5 presents the equilibrium outcomes under the

counterfactual scenario, measured by their changes from the original equilibrium levels. The figures

each plot changes in equilibrium levels for residential amenities (B̂n), number of residents (R̂n),

number of workers (L̂m), area of floor space (Ĥn), expected income of residents (Ŵn), average wage

of workers (ŵm), and price of floor space (P̂nH). Red cells denote negative changes compared to the

initial equilibrium, such as fewer residents or workers, or decreases in wage, etc.; blue cells denote

positive changes. For locations in the most polluted quartile (with an annual PM2.5 concentration

above 75 µg/m3), the counterfactual analysis predicts an 18% drop in the number of residents, a

7% drop in the number of workers, a 3% increase in both residential income and workers’ average

wage, a 12% decrease in total area of floor space, and a 5% decrease in housing prices, at average

levels.

Figure 5a, the first map of the set, shows the changes in residential amenities at the new equi-

librium. They are nearly identical to the exogenous shock I initially introduce from the preference

change, except that the equilibrium outcomes also adjust for residential externalities. The amenity

shocks are negative for almost all locations, as consumers’ perception of pollution’s harm over-

whelms the benefits from green space. Particularly, the south and southeast sections of the city

has poorer air quality and limited green space and therefore experience sizable drops in residential

amenity levels as large as -30% to -50%.

Figures 5b and 5c plot the shift in population distributions. As expected, the estimates of the

new equilibrium show a major relocation of residents from the city’s polluted south to the northwest

and the suburbs. Since residents favor closer workplaces and consumption places due to the cost of

travel, job locations in the service sector also redeploy around new residential centers in response,

as illustrated in Figure 5c. The changes in job density have a less distinct pattern compared to those

for residential density due to the availability of commuting.

For additional labor market outcomes, I present in Figures 5e and 5f the changes in equilib-
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rium income and wage. Changes in expected income directly reflect the monetary compensation

associated with the lack of residential amenities. Unsurprisingly, I find a considerable increase in

the residents’ income in places where amenities are less satisfying. The estimates indicate that

consumers’ perceived cost of environmental damages can be as large as 4% of one’s income in

Beijing’s most polluted areas. In Section 6.3, I leverage the trade-off between real income and pol-

lution levels to estimate consumers’ willingness to accept for air pollution and the damage curve

of pollution. Wage levels, on the other hand, signal the relative strength in service production and

labor supply. The equilibrium outcome shows a rise in workers’ wage in the polluted city center,

since workers in the new equilibrium would demand compensation to overcome higher commuting

cost if they relocate to cleaner suburbs, or to offset the lack of amenities if they reside in polluted

locations near the workplace. Overall, the counterfactual change in consumers’ amenity preference

leads to higher costs for firms to acquire labor if the firms locate in the polluted areas of the city,

even if environmental amenities do not directly affect production as I specify in the model. Re-

cent studies suggest that poor air quality has a significant negative impact on worker productivity,

though the scale of the impact varies with sector and region (Graff Zivin and Neidell, 2012; He et

al., 2019; Chang et al., 2019). If I incorporate the productivity effects, the theoretical model would

likely predict larger production relocation and wage adjustments.

In the housing market, the southern half of the city sees a substantial decline in both residential

and production demand, leading to less occupied floor space (Figure 5d) and lower housing prices

(Figure 5g) at equilibrium levels. I further partition the total change in floor space to changes in

residential housing (Figure 6b) and non-residential housing (Figure 6c) which confirms the finding.

I repeat the event study analysis in Section 3, incorporating housing price adjustments from the

counterfactual equilibrium. The estimates in Figure A14 show that if individuals had incorporated

environmental amenities into their decisions prior to 2012, the capitalization of air pollution in the

housing market will be of similar levels to that in the following years after the implementation of

the pollution monitoring-and-disclosure program in Beijing.

Table A2 shows the semi-elasticity for each endogenous variables with respect to air pollution,
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the major driver of the amenity shock. I regress location-specific counterfactual changes on local air

pollution levels in 2009, and estimate the semi-elasticities between the original and counterfactual

equilibrium. The estimates are consistent with patterns observed in the previous plots. Specifically,

I estimate a semi-elasticity of -0.003 for housing price, roughly on par with the estimated change

in Figure A14.

Welfare Impacts. The adjustments in consumers’ residential, workplace and consumption de-

cisions entail notable welfare benefits. The overall welfare increase, which I calculate from Û in

Equation 1, amounts to 8.43% in the counterfactual equilibrium compared to the original. This is

equivalent to the welfare change if I impose an 8.43% raise in income for all individuals, while

holding all other variables at their unadjusted levels. For 2010, the welfare benefit translates to

2,450 Chinese yuan (or $366 in 2010 dollars, $440 in 2021 dollars16) per person. With a 20-

million population, the total benefit for Beijing’s residents adds up to 50 billion yuan in 2010, had

they been internalizing environmental harms into their decisions. The counterfactual adjustments

are mostly beneficial for residents residing in the polluted locations in 2010. Aggregating over

different age and income groups, I find large welfare improvements for seniors and higher-income

residents (Figures A12 and A13).

In Table 6, I explore five additional scenarios to identify the channels through which environ-

mental amenities affect welfare. Scenario (0) corresponds to the full model I previously discussed,

predicting an 8.43% increase in welfare.

In scenario (1), I mute the adjustments in the labor market (Ŵn) by retaining each cell’s original

wage levels (wm) and commuting probabilities (λW
nm|n). This incurs huge commuting costs directly

to workers who have relocated away from their original workplace. As a result, scenario (1) predicts

that almost all welfare benefits from residential and consumption adjustments will be offset if labor

market outcomes remain in situ.

In Scenario (2), I partial out the welfare benefit driven by service market adjustments (Ŝn) by

16In 2010, The average disposable income for Beijing’s residents is 29,073 yuan. The exchange rate for USD/CNY is
6.7 in 2010. $1 in 2010 is equal in buying power to $1.20 in 2021 using chained CPI as the measurement.
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fixing service prices (PjS) and consumption probabilities (λ S
n j|n) at their original levels. The welfare

contribution from the service market adjustments appears to be marginal compared to estimates for

the labor market in Scenario (1), and the reasons are twofold. First, non-tradable goods and services

accounts for less than one-third of consumers’ expenditures, while their income depends entirely

on labor market outcomes and commuting costs. As a result, consumers’ welfare are more sensitive

to changes in wage levels than those in service price. Secondly, the cost of consumption trips are

much higher than that of commuting trips and an overwhelming majority of demand for services

are met locally in both equilibria. This implies minor adjustments in conditional consumption

probabilities between two equilibria and a small welfare change correspondingly.

Conversely, changes in housing price (P̂nH) explain a sizable proportion of the welfare gain,

despite housing’s relatively small share (28%) in consumer expenditure. This is because housing is

a local good that residents cannot substitute with non-local supplies (unless switching residence).

More importantly, the price of floor space affects welfare through multiple pathways, including its

direct implication with residential relocation and its complementarity with labor on the production

side.

Scenarios (4) and (5) re-estimate two counterfactual equilibria where I set the strength of pro-

duction externality (ηW ) and residential externality (ηB) to zero, respectively. Both forces reshape

the agglomeration of economic activities and affect the overall welfare at a moderate level.

In summary, if we assume consumers’ utility are correctly specified in 2014, then the absence

of environmental amenities in consumers’ decision framework in 2010 would be associated with

a substantial loss in welfare, due to suboptimal choices and market equilibrium outcomes. In the

counterfactual analysis, I apply consumers’ enhanced preference on environmental amenities in

2014 onto the observed equilibrium in 2010 and find an 8.43% welfare improvement from con-

sumers’ decision adjustments. The welfare gain is equivalent to an income shock of 2,450 Chinese

yuan (or $366) per person in 2010. The major channels explaining the welfare change are market

forces in the labor and housing markets. The welfare estimates suggest large potential gains from

government programs that, for example, facilitate air pollution information disclosure, or those that
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raises consumers’ awareness on environmental amenities or the lack thereof.

6.3 Willingness to Accept on Air Pollution

In this section, I derive the cell-specific willingness to accept (WTA) or minimum compensation

for individuals to bear additional pollution. I follow Rosen-Roback model of inter-urban sorting

developed in Gao et al. (2021) and provide estimates with simulated equilibrium outcomes.

Gao et al. (2021) proposes that consumers’ marginal willingness to pay (MWTP) for an amenity

x is captured in the semi-elasticity of real income with respect to the amenity, if consumers reveal

their true hedonic prices in their residential choices. MWTP can be calculated with the following

equation.

MWT Px =
∂ log(Income/PαH

H )

∂ x
× Income

where Income denotes residential income, PH denotes housing price, and αH denotes housing share

in consumer expenditure. The term Income/PαH
H measures residents’ real income, i.e. housing price

adjusted income.

To estimate the semi-elasticities, I compute 260 counterfactual exercises where I shock each

inhabited cell with a 1 µg/m3 increase in PM2.5 concentration, holding pollution levels in all other

locations at their originally observed levels. I use the counterfactual equilibrium calculated in

Section 6.2 as the baseline. From the simulated equilibrium outcomes, I can calculate the semi-

elasticities for residents living in location n as Ŵn
P̂αH

nH
.

Figure 7 plots the spatial distribution and kernel density of the estimates. I find the marginal

willingness to accept being 25 yuan on average in compensation for a 1 µg/m3 increase in PM2.5

concentration. The map shows substantial heterogeneity in the marginal willingness to accept

across the city. Individuals residing in the cleaner northwest regions, for example, demand rela-

tively higher compensation compared to those from polluted locations, since I estimate a downward

sloping marginal damage curve with respect to pollution. Figure 8 plots the relationship between

37



willingness to accept and pollution levels in an effort to retrieve the perceived marginal damage

curve. Cells are grouped into 20 bins according to their pollution levels. The red line fits the

within-bin averages, weighted by the residential population of the cells in each bin. The figure

shows that residents whose home location enjoys the cleanest air in the city has a marginal willing-

ness to accept as high as 50 yuan, three times greater than the estimates for those who live in the

most polluted locations.

7 Conclusion

This paper studies the role of environmental amenities in shaping the distribution of economic activ-

ities in an urban system. I focus on consumers’ increasing preference for environmental amenities

in Beijing, a result of improved consumer awareness and information availability on locations’ en-

vironmental qualities. Leveraging the spatial granularity of several rich and unique data sets, my

analysis documents a large welfare improvement if consumers could incorporate environmental

amenities into their decisions, compared to the scenario of not incorporating environmental ameni-

ties. The primary channels of impact are relocation of residents and across different neighborhoods

within the city, as well as adjustments in local housing markets.

The findings from the study suggest large benefits from policies that facilitate information

disclosure or raise public awareness on environmental amenities, such as pollution information

monitoring-and-disclosure programs, news coverage on environmental risks, etc. As such, policy-

makers should commit to the availability, transparency, and accuracy of monitored data, as well as

informing the public of the benefits and harms associated with environmental amenities or a lack

thereof. Moreover, the analysis on Beijing highlights the significance of environmental amenities

to both residential decisions and production activities in the city. As consumers’ preference for

environmental amenities grow, residents locations with better amenities would become more popu-

lar, and firms located in areas with less desirable amenities could face higher labor costs and lower

demands due to costly commuting and consumption travels. City planning authorities should take
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both adjustments into account when designating land purposes or managing future urban devel-

opment project. Finally, while my study is in the context of environmental amenities, the frame-

work of the analysis could offer important guidance on urban planning in other settings such as

site choices for new schools and hospitals, relocation of factories or government offices, etc. A

comprehensive evaluation of such interventions, entailing not only their direct effects on one local

market but also the extended impacts in the greater urban economy, is crucial for policymakers to

make well-rounded decisions in order to reduce any inefficiencies in resource allocation.
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Figure 1: Spatial Patterns

(a) Residential Density (b) Worker Density (c) Area of Floor Space

(d) Expected Income of Residents (e) Average Wage of Workers (f) Price of Floor Space

Notes:
Figures (a)-(c) show the distribution of residents, workers and floor space at cell level, as percentages to the total

number of residents, workers and total area of floor space in the area.
Figures (d)-(f) show the expected income of residents, average wage of workers and average price of floor space at

each location. Figures showing income and wage exclude locations where the number of residents or workers is below
10, respectively.

The sample includes employed individuals (full-time and part-time) from Beijing Household Travel Survey (2010).
The total number of sampled individuals is 49,454.

Deep color denotes higher density, income, or wage level.
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Figure 2: Event Study: Semi-Elasticity of Housing Price w.r.t Air Pollution

Notes: The figure plots quarterly semi-elasticity of housing price with respect to air pollution for Beijing’s housing
transactions between 2011 and 2014. Controls include cell FEs, transaction year-month FEs, quadratic functions of
unit and complex size, as well as other unit and complex characteristics (number of rooms, distance to the nearest
subway station at transaction date, school district, complex size and number of buildings).
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Figure 3: Framework of the General Equilibrium Model
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Figure 4: Decomposition of Locations’ Attractiveness, 2010

(a) Workplace Access, Wn (b) Consumption Access, Sn (c) Residential Amenities, Bn

(d) Variance Decomposition

log Workplace
Access

log Consumption
Access

log Residential
Amenities

(1) (2) (3)

log Attractiveness 0.49*** 0.21*** 0.30***
(0.01) (0.01) (0.02)

R2 0.83 0.64 0.43

Notes:
Figures plot the cell-level measure of (a) workplace access, (b) consumption access, and (c) residential amenities, derived from estimated results of the gravity

equation. Residential amenities, workplace access, and consumption access cannot be estimated for home cells with insufficient data on work trips or consumption
trips, or where price of floor space in unavailable.

Table (d) reports the estimation results of variance decomposition for each location’s attractiveness from Equation 20. The dependent variables are log of (1)
workplace access W, (2) consumption access S, and (3) residential amenities B, respectively.

The independent variable is the log of attractiveness for each location. I measure attractiveness with a composition of residential density and housing price,

(λ B
n )

1
θB PαH

nH .

48



Figure 5: Counterfactual Equilibrium, % Changes Relative to Original Eq’m

(a) Residential Amenities

(b) Number of Residents (c) Number of Workers (d) Area of Floor Space

(e) Expected Income of Residents (f) Average Wage of Workers (g) Price of Floor Space

Notes:
Figure (a) plots the counterfactual changes to residential amenities introduced in the counterfactual scenario where

residents in 2010 would value environmental amenities as they did in 2014.
Figures (b) - (g) plot for each location the percentage changes of variables at the new equilibrium level relative to

the original equilibrium observed in 2010.
Red denotes negative changes (e.g. fewer residents or workers, decrease in wage or income) and blue positive

changes.
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Figure 6: Changes in Area of Floor Space, % Changes Relative to Original Eq’m

(a) Total Area of Floor Space

(b) Residential Use (c) Production Use

Notes:
Figure (a) plots the counterfactual changes to the total area of floor space for each location at the new equilibrium

level relative to the original equilibrium observed in 2010.
Figures (b) and (c) plots the changes in floor space for residential use and production use, respectively.
Red denotes decreases in the area of floor space and blue increases.
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Figure 7: Real Income Elasticity to Pollution Shock

(a) Spatial Distribution

(b) Kernal Density

Notes: Figure (a) plots the spatial distribution of marginal willingness to accept for a 1 µg/m3 pollution increase.
Figure (b) plots the kernel density.
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Figure 8: Marginal Willingness to Accept v. Air Pollution

Notes:
This figure plots the relationship between consumers’ willingness-to-accept (WTA) to compensate for a 1 µg/m3

increase in annual average PM2.5 concentration level and their home locations’ pollution levels in 2009.
Marginal willingness to accept for each location is the product of observed average income and the real income

elasticity to pollution, which I derive from the counterfactual analysis.
Residential locations are grouped into 20 bins by their pollution levels in 2009. The center of each circle denotes

the within-group weighted averages of WTA and pollution, with the weights being the number of residents for each
location. The size of the circle denotes the total number of residents for the locations in each bin. The red line is the
weighted linear fit from the within-group averages.
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Table 1: Summary Statistics

Variable Mean Std. Dev. Min. Max. N

Individual level
Income, yuan 44,063.76 27,589.76 6,250 400,000.00 48,338
Male 0.54 - - 1.00 48,338

Location (cell) level
Number of residents 142.22 150.30 1.00 721.00 340
Number of workers 85.49 516.86 1.00 12,783.00 647
Avg. income of residents 42,010.14 10,495.33 16,666.67 100,000.00 340
Avg. wage of workers 40,664.76 14,621.15 12,500.00 275,000.00 647
Housing price 11,357.54 4,837.66 2,839.00 33,488.00 356
Proximity indices for

Schools 708.91 200.95 315.65 1,301.57 756
Hospitals 6.78 16.94 1.66 285.06 756
Parks 6.89 27.09 1.41 507.70 756

PM2.5 concentration, µg/m3 69.82 7.92 31.80 84.95 756

Notes:
The sample includes all employed individuals in Beijing Household Travel Survey (2010). The unit for income,

wage, and housing price is Chinese yuan.
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Table 2: System of Equations and Exact-hat Algebra

Variable description Variable, z Counterfactual changes, ẑ

Commuting probability λW
nm|n =

TW
m

(
wm
κW

nm

)θW

∑l∈N TW
l

(
wl

κW
nl

)θW
. λ̂W

nm|n =
(ŵm/κ̂W

nm)
θW

∑l∈N(ŵl/κ̂W
nl )

θW λW
nl|n

Consumption probability λ S
n j|n =

T S
j

(
PjS ·κS

n j

)−θS

∑l∈N T S
l (PlS ·κS

nl)
−θS

λ̂ S
n j|n =

(
P̂jS κ̂S

n j

)−θS

∑l∈N(P̂lS κ̂S
nl)
−θS λ S

nl|n

Residential probability λ B
n =

T B
n

(
Bn

P
αT
nT P

αH
nH

WnSn

)θB

∑l∈N T B
l

(
Bl

P
αT
lT P

αH
lH

WlSl

)θB
λ̂ B

n =

(
B̂nŴnŜn/P̂αH

nH

)θB

∑l∈N

(
B̂lŴl Ŝl/P̂αH

lH

)θB
λ B

l

Commuting access Wn = Γ( θW−1
θW

) ·
[

∑l∈N TW
l

(
wl
κW

nl

)θW
] 1

θW
Ŵn =

[(
ŵn/κ̂W

nn
)θW /λ̂W

nn|n

] 1
θW

Consumption access Sn = Γ

(
θS/αS−1

θS/αS

)
·
[
∑l∈N T S

l

(
PlS ·κS

nl

)−θS
] αS

θS Ŝn =

[(
P̂nSκ̂S

nn

)−θS
/λ̂ S

nn|n

] αS
θS

Expected utility U = Γ

(
θB−1

θB

)[
∑l∈N T B

l

(
Bl

PαT
lT PαH

lH
WlSl

)θB
] 1

θB

Û =

[
∑l∈N

(
B̂lŴl Ŝl/P̂αH

lH

)θB
λ B

l

] 1
θB

Price of services PmS =
Em

Am

(
L̃m
β

)β( HmS
1−β

)1−β
P̂mS =

Êm

Âm
̂̃Lβ

mĤ1−β

mS

Price of floor space PmH = ϕmH
1−µ

µ

m P̂mH = Ĥ
1−µ

µ

m

Wage wm =
(

PmSAm/P1−β

mH

) 1
β ŵm =

(
P̂mSÂm/P̂1−β

mH

) 1
β

Floor space Hm = HmB +HmS Ĥm = ĤmSHmS+ĤmBHmB
HmS+HmB

Production floor space HmS =
(1−β )Em

PmH
ĤmS =

Êm
P̂mH

Residential floor space HnB = αHWnRn
PnH

ĤnB = ŴnR̂n
P̂nH

Service expenditure Em = αS ∑n λ S
nm|nWnRn Êm = E ′m

Em
=

∑n λ ′Snm|nW′nR′n
∑n λ S

nm|nWnRn

Efficiency units of labor L̃m = βEm
wm

̂̃Lm = Êm
ŵm

Number of workers Lm = ∑n λW
nm|nRn L̂m = L′m

Lm
=

∑n λ ′Wnm|nR′n
∑n λW

nm|nRn

Number of residents Rn = λ B
n Pop R̂n = λ̂ B

n

Productivity Am = AmLηW
m Âm = L̂ηW

m

Residential amenity Bn = BnRηB
n B̂n = R̂ηB

n

Notes: I take tradable goods as the numéraire and normalize its price (PnT ) to be 1.
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Table 3: Estimation Results for Gravity Equations

Conditional Travel Probability, λni|n
All Trips Work Consumption Other

(1) (2) (3) (4)
Distance -0.169*** -0.100*** -0.414*** -0.209***

(0.008) (0.006) (0.019) (0.013)

N 15,002 14,975 13,886 14,849

Notes:
This table reports the PPML estimates of the gravity coefficients in Equation 17 for (1) all trips, (2) work trips, (3)

consumption (shopping and dining) trips, and (4) other trips.
Each observation is a pair of origin-destination cells. The dependent variable λni|n is the conditional probability of

cell n’s residents visiting cell i for a certain type of trip. The independent variable is the distance between the centroids
for an origin-destination cell pair. Coefficient estimates are semi-elasticities of travel probability with respect to trip
distances.

Table 4: Calibrated and Estimated Structural Parameters

Description Parameter Value

Dispersion of Fréchet shocks θW , θS, θB 6

Consumer expenditure share on
Tradable goods αT 42%
Residential housing αH 28%
Non-tradable goods αS 30%

Semi-elasticities of travel probability w.r.t. distance for
Commuting trips ΦW -0.10
Consumption trips ΦS -0.41

Production technology
Labor share in service production β 0.60
Capital share in floor space production µ 0.77

Production externality ηW 3%
Residential externality ηB -1%

Notes:
Consumer expenditure shares are calibrated from consumer surveys conducted by Beijing Municipal Bureau of

Statistics. In 2014, consumer expenditure shares on tradable goods, housing, and non-tradable goods are 24%, 31%,
and 45%, respectively.

Semi-elasticities of travel with respect to trip distances are PPML estimates in Table 3, calculated using bilateral
travel data from Beijing Household Travel Survey (2010).

Factor shares in service production are extrapolated from Bai and Qian (2010).
Factor shares in floor space production are calibrated from Ministry of Land and Resources, PRC (2009).
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Table 5: Decomposition of Residential Amenity B

(a) Standardized Beta Coefficient Estimates

Residential amenity B

(1) (2)

2010 2014

Proximity index for
Schools 0.11* 0.14**

(0.07) (0.06)
Hospitals 0.16*** 0.16***

(0.07) (0.06)
Parks -0.08 0.18***

(0.07) (0.06)
Air pollution year−1 -0.04 -0.24***

(0.07) (0.06)

N 238 237
R2 0.05 0.13

(b) OLS Coefficient Estimates

Residential amenity B

(1) (2)

2010 2014

Proximity index for
Schools 0.21** 0.32**

(0.11) (0.16)
Hospitals 0.16*** 0.25***

(0.06) (0.09)
Parks -0.02 0.06**

(0.02) (0.03)
Air pollution year−1 0.37 -1.96***

(0.58) (0.65)

N 234 236
R2 0.05 0.09

Notes:
Panel (a) reports estimates of standardized coefficients, where all variables in regression are standardized to zero mean and unit variance. Panel (b) reports OLS

coefficient estimates.
The dependent variable measures residential amenities B for year 2010 (Column 1) and 2014 (Column 2), respectively. Residential amenity is calculated as a

location’s attractiveness net of its commuting and consumption accessibility,

Bn =
(λ B

n )
1

θB PαH
nH

WnSn
.

Proximity indices of amenity J for cell n are constructed as

indexJ
n = ∑

j∈J

1
dn j

x j,

where J denotes the set of a given amenity (e.g. schools, hospitals, or parks); dn j denotes the distance between cell n and amenity j; x j denotes the quality of
the amenity (fixed at 1 for schools and hospitals). For parks, I treat each cell as a potential amenity provider and use the area of green space in each cell as the
quality measure x j. Distances and areas are measured in km and km2, respectively. Proximity indices are scaled up by 100 in regressions. Proximity indices are
time-invariant.

Air pollution year−1 denotes the average level of PM2.5 concentration for the cell in the previous year (2009 for Column 1 and 2013 for Column 2).
Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table 6: Channels of Welfare Impacts

Scenarios % Change in Welfare

(0) Full model 8.43%

(1) Without labor market adjustment 0.80%
(2) Without service market adjustment 8.08%
(3) Without housing market adjustment 2.87%

(4) Without production externality 5.36%
(5) Without residential congestion 5.03%

Notes:
Scenario (0) corresponds to the counterfactual equilibrium estimated with the full model.
In Scenarios (1) to (3), I shut down adjustment in the labor, service, and housing market, respectively.
Scenarios (4) mutes the production externality, and scenario (5) mutes the residential externality (congestion).
Percentage change in welfare is calculated as Û−1.
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Appendices
A Descriptive Data Pattern

Figure A1: Estimated Population Density

(a) CAS

(b) NASA

Notes: The figures show the estimated population density for the study area from (a) Chinese Academy of Science
(CAS) and (b) NASA, based on census data and land use.
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Figure A2: Commuting Flows, 2010

Notes: The figure shows the commuting flow in Beijing in 2010. Cells in red denote locations with more jobs than
residents, with a net inflow of commuting workers; cells in blue denote locations with more residents than jobs, with a
net outflow of commuting workers.
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Figure A3: Travel Distance of Commuting and Consumption Trips, 2010

Notes: The figure shows the kernel density of travel distance for commuting trips (blue line) and consumption trips
(red line).

Figure A4: Travel Time of Commuting and Consumption Trips, 2010

Notes: The figure shows the kernel density of travel time for commuting trips (blue line) and consumption trips (red
line).
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Figure A5: Travel Time vs. Trip Distance, 2010

Notes: The figure shows the relationship between travel time (y-axis) and trip distance (x-axis). Sample excludes 10%
trips with the longest trip distances. Trips are grouped into 20 bins according to trip distanced.

Figure A6: Duration of Stay for Commuting and Consumption Trips, 2010

Notes: The figure shows the kernel density of stay duration for commuting trips (blue line) and consumption trips (red
line).
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Figure A7: Housing Unit Locations

Notes: The figure shows locations of housing units in the housing transaction sample collected from two major real
estate firms in Beijing. Red dots denotes locations of new housing units; blue dots denotes resales.
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Figure A8: PM2.5 Concentration, 2009

Notes: The figure plots the PM2.5 concentration for each cell in Beijing in 2009 calculated from Hammer et al. (2020)
and Van Donkelaar et al. (2019). Cells with deeper color denotes more polluted locations.
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Figure A9: Schools and Parks

Notes: The figure plots locations of schools (red dots) and parks (green areas) in Beijing.
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Figure A10: Survey Data vs. Predictions of Gravity Equations

(a) Number of Workers (b) Total Revenue of Service Sector

Notes: The figures show the relationship between model prediction (y-axis) and survey data (x-axis) for each location’s (a) total number of workers and (b) total
revenue of service sector. The unit for service revenue is million yuan.

The number of workers (Lm) is calculated from commuting probabilities (λW
mn|n) through Equation 15, and service revenue (Em) from consumption probabil-

ities (λW
jn|n) through Equation 14. For model predictions, observed commuting probabilities (λW

mn|n) and consumption probabilities (λW
jn|n) are replaced with their

predictions from the gravity equations specified as Equation 17, without the error term.
Prediction errors in number of workers (Lm) and service revenue (Em) are completely driven by prediction errors in commuting probabilities (λW

mn|n) and
consumption probabilities (λW

jn|n), respectively.
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Figure A11: Locations’ Overall Attractiveness

Notes: The figure plots locations’ overall attractiveness as residence, measured by its residential density and housing
price,

Attractivenessn = (λ B
n )

1
θB PαH

nH .
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Figure A12: Average Welfare Impacts by Age Groups
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Figure A13: Average Welfare Impacts by Income Groups
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Figure A14: Counterfactual Event Study: Semi-Elasticity of Housing Price w.r.t Air Pollution

Notes: The figure plots quarterly semi-elasticity of housing price with respect to air pollution for Beijing’s housing
transactions between 2011 and 2014. The blue line plots the coefficient estimates using observed housing price in
the sample. The red dash line plots the coefficient estimates with counterfactual housing prices, where unit housing
price before Jan. 2012 is adjusted with the counterfactual changes as plotted in Figure 5g. The average of coefficients
from the original event study prior to 2012 is normalized to zero. Controls include cell FEs, transaction year-month
FEs, quadratic functions of unit and complex size, as well as other unit and complex characteristics (number of rooms,
distance to the nearest subway station at transaction date, school district, complex size and number of buildings).
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Table A1: Robustness Checks for Decomposition of Residential Amenity

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Sample 2010 2014 2010 2014 2010 2014 2010 & 2014

Proximity index for
Schools 0.11* 0.14** 0.07 0.09

(0.07) (0.06) (0.07) (0.06)
Hospitals 0.16** 0.16*** 0.07 0.08

(0.07) (0.06) (0.07) (0.06)
Parks -0.08 0.18*** -0.05 0.05

(0.07) (0.06) (0.07) (0.06)
Air pollution year−1 -0.02 -0.20*** -0.04 -0.24*** 0.04 -0.25*** 0.001 0.02 -0.26

(0.07) (0.06) (0.07) (0.06) (0.07) (0.06) (0.07) (0.07) (0.18)
Air pollution year−1 × 1{2014} -0.13* -0.13* -0.10

(0.07) (0.07) (0.18)

District FEs Yes Yes Yes
Cell FEs Yes
Year FEs Yes Yes Yes

N 238 237 238 237 238 237 370 370 370
R2 0.04 0.08 0.05 0.13 0.26 0.34 0.02 0.29 0.72

Notes:
The dependent variable measures residential amenities B. Coefficients are standardized beta coefficients. Residential amenity is calculated as a location’s

attractiveness net of its commuting and consumption accessibility.
Proximity indices of amenity J for cell n are constructed as

indexJ
n = ∑

j∈J

1
dn j

x j,

where J denotes the set of a given amenity (e.g. schools, hospitals, or parks); dn j denotes the distance between cell n and amenity j; x j denotes the quality of
the amenity (fixed at 1 for schools and hospitals). For parks, I treat each cell as a potential amenity provider and use the area of green space in each cell as the
quality measure x j. Distances and areas are measured in km and km2, respectively. Proximity indices are scaled up by 100 in regressions. Proximity indices are
time-invariant.

Air pollution year−1 denotes the average level of PM2.5 concentration for the cell in the previous year. 1{2014} is the indicator variable for year 2014.
Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table A2: General Equilibrium Elasticities

% Change in

Number of
Residents

Number of
Workers

Area of Floor Space for Price of
Floor Space

Average Wage of
Employed Workers

Expected Income
of Residents

Real Income
of ResidentsResidential Use Production Use

(1) (2) (3) (4) (5) (6) (7) (8)

Air Pollution, 2009 -.027*** -.0095*** -.013*** -.013*** -.003*** .00039 .0016*** .0033***
(.0032) (.0017) (.0029) (.0029) (.00063) (.0014) (.00035) (.00071)

N 346 626 260 296 356 616 316 260
R2 .17 .05 .072 .069 .059 .00012 .059 .078

Notes: Each observation is a location cell. The dependent variables are changes in endogenous variables between the counterfactual equilibrium and the original.
The independent variable is PM2.5 concentration level at each location in 2009. Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.
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B Regression-Based Variance Decomposition

Assume the following data generating process,

y = x1 + x2 + x3,

where outcome y is determined by three factors x1, x2, and x3.

I can decompose the variance in y as

var(y) = cov(y,y)

= cov(x1 + x2 + x3,y)

= cov(x1,y)+ cov(x2,y)+ cov(x3,y),

or equivalently,

1 =
cov(x1,y)

var(y)
+

cov(x2,y)
var(y)

+
cov(x3,y)

var(y)
,

where cov(xk,y)
var(y) denotes the part of variation in y that can be explained by the comovement between

outcome y and the k-th component (xk).

I can estimate cov(xk,y)
var(y) from OLS regression with the following specification where xk is the

dependent variable and y is the independent variable,

xk = β0 +βky+ ε,

and

β̂k
p→ βk =

cov(xk,y)
var(y)

.
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C Exact-hat Algebra

In the notation below, the changes between a variable in the original equilibrium (z) and its coun-

terpart in the counterfactual equilibrium (z′) are defined as ẑ = z′
z and ∆z = z′− z. And the goal is

to derive z′ as functions of z and {ẑ,∆z}.

To start with, I rewrite Equations 3, 5, and 7 and express changes in choice probabilities using

changes in wages, price levels, travel costs, access measures, and residential amenities.

λ̂
W
nm|n =

(
ŵm/κ̂W

nm
)θW

∑l∈N
(
ŵl/κ̂W

nl

)θW
λW

nl|n

,

λ̂
S
n j|n =

(
P̂jSκ̂S

n j

)−θS

∑l∈N

(
P̂lSκ̂S

nl

)−θS
λ S

nl|n

,

λ̂
B
n =

(
B̂nŴnŜn/P̂αH

nH

)θB

∑l∈N

(
B̂lŴlŜl/P̂αH

lH

)θB
λ B

l

,

where changes in commuting access and consumption access are derived from Equations 4 and 6

as

Ŵn =
[(

ŵn/κ̂
W
nn
)θW /λ̂

W
nn|n

] 1
θW ,

Ŝn =

[(
P̂nSκ̂

S
nn

)−θS
/λ̂

S
nn|n

] αS
θW

.

The overall utility difference combines changes in amenities, commuting access, consumption

access, and housing prices, weighted by the residential share,

Û =

[
∑
l∈N

(
B̂lŴlŜl/P̂αH

lH

)θB
λ

B
l

] 1
θB

. (1)

Rewriting results from producers’ profit maximization in Equation 9, I can derive changes in

prices and wages {P̂mH , P̂mS, ŵm}, which should satisfy

P̂mS =
1

Âm
ŵβ

mP̂1−β

mH ,
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or equivalently,

ŵm =

(
P̂mSÂm

P̂1−β

mH

) 1
β

.

From the market clearing conditions, I can derive the price change in non-tradable goods as

P̂mS =
Êm

Âm
̂̃Lβ

mĤ1−β

mS

,

where Êm denotes the change in firms’ total revenue and

Êm =
∑n λ ′Wnm|nW′nR′n
∑n λW

nm|nWnRn
.

In the labor and housing market, changes in demands can be derived as

̂̃Lm =
Êm

ŵm
,

ĤmS =
Êm

P̂mH
,

ĤnB =
ŴnR̂n

P̂nH
.

and changes in aggregated demand for floor space is

Ĥm =
ĤmSHmS + ĤmBHmB

HmS +HmB
.

From profit maximization conditions of the building sector, changes in housing price and floor

space supply is governed by a constant supply elasticity, and

P̂mH = Ĥ
1−µ

µ

m .

From residential probabilities and workplace choices, changes in labor supply can be derived

as

L̂m =
∑n λ ′Wnm|nR′n
∑n λW

nm|nRn
.

From Equations 11 and 12, externalities regarding productivity and common amenities should
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follow

Âm = L̂ηW
m ,

B̂n = R̂ηB
n .

Finally, under the assumption of the closed-city model, the city’s total population is a constant,

and the number of residents at each location is proportional to its residential probability.

P̂op = 0,

and R̂n = λ̂
B
n .
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